MICROSTREAM® CAPNOGRAPHY: The use and benefits in intubated and nonintubated patients

Troy Smith LT/PM SCFD 7

Course Overview

- Capnography Overview
- Physiology
- Oxygenation vs. Ventilation
- History of Capnography

Course Overview

- Technology Advances
- Understanding the Waveform
- Capnography uses in EMS Intubated uses
- Non-intubated uses

Capnography Overview

Why use capnography?

Why should I learn capnography?

Capnography Overview

- End Tidal CO₂ -What is It?
 - Breathing is done in waves
 - EtCO₂ is the amount of CO₂ measured at the peak of the wave
 - EtCO₂ is measured at nose, mouth, or hub of the ET tube

Capnography Overview

- A technology that
 - Provides another measurement in assessing your patient
 - Gives an objective measure ofyour patient's ventilatory status
 - Shows a graphic picture of your patient's ventilatory status
 - Presents an early warning of changes in your patient's cardiopulmonary status
 - Supplies important documentation on your patient

PHYSIOLOGY

Physiology of CO₂

ALL THREE ARE IMPORTANT!

Physiology of Carbon Dioxide Production

The Relationship Between PaC0₂ and EtC0₂

- EtCO₂ normal range is 35 45 mmHg
- Under normal ventilation and perfusion conditions, the PaCO₂& EtCO₂ will be very close
 - 2 5 mmHg with normal physiology
- Wider differences found in abnormal perfusion and ventilation

Oxygenation and Ventilation

What is the difference?

Oxygenation versus Ventilation

- Monitor your own
 SpO₂ and EtCO₂
- SpO₂ waveform is in the second channel
- EtCO₂ waveform is in the third channel

When every breath counts

Oxygen Desaturation Curve

Trend Summary Desaturation

Oxygenation and Ventilation

Oxygenation

- Oxygen for metabolism
- SpO₂ measures % of O2 in RBC
- Reflects change in oxygenation within 5 minutes
- Sensitive to artifact, motion, poor perfusion

Ventilation

- Carbon dioxide from metabolism
- EtCO₂ measures exhaled CO₂ at point of exit
- Reflects change in ventilation within 10 seconds
- Accurate with motion and poor perfusion

History of Capnography in EMS

- Used by anesthesiologists since the 1970s
- Standard of care in the OR since 1991
- New standards and technologies now expanding utilization

Source: PRACTICE GUIDELINES FOR SEDATION AND ANALGESIA BY NON-ANESTHESIOLOGISTS (Approved by the House of Delegates on October 25, 1995, and last amended on October 17, 2001) Anesthesiology 96: 1004-1017, 2002

History of Capnography in EMS

Conventional Technologies

Mainstream

Sidestream

History of Capnography in EMS

Capnography Technologies

Conventional high-flow sidestream

Mainstream

Microstream® technology

History of Capnography in EMS

Conventional high-flow sidestream system

capnography

Conventional Sidestream Technologies

Advantages

No sensor at airway

Intubated & non-intubated applications

ONS Analyzer Y Piece Tube

Disadvantages

- Requires routine zero & calibration
- Requires high sample flow rate (150-250 ml/min)
- Secretions block sampling tube
- Requires external filter & water trap
- Competes for tidal volume in infants & neonates

History of Capnography

Mainstream Capnography

Mainstream Conventional Technology

Advantages

Sensor on airway / real time

Disadvantages

- Requires routine zero & calibration
- Requires sensor & cable at airway
- Heavy sensor on the airway
- Expensive sensor replacement
- Secretions block sensor window
- Only intubated patient populations
- Not able to use on non-intubated patients

Microstream® Technology

- Microstream® technology improves upon conventional sidestream technology
 - Focused CO₂ specific IR beam
 Not affected by any
 other gases
 - Low sample flow rate-50 ml/min
 - Miniature sample cell
 -15 microliters

Microstream® Technology

Microstream® technology improves upon conventional sidestream

technology

Advantages

- No sensor at airway
- No routine calibration
- Automatic zeroing
- Neonatal through adult
- Intubated and non-intubated patients
- Promotes superior moisture handling
- Accurate at small tidal volumes and high respiratory rates (pediatrics/neonates)

Microstream®Capnography

- A combination of a unique CO₂ sidestream measurement technology and FilterLine[®] sampling line for improved breath sampling
- Only system providing accurate EtCO₂ readings for non-intubated patients receiving supplemental O₂ and switch between oral and/or nasal breathing

Microstream®Capnography Major Benefits

- Ease of use
- Reliable technology
- Flexibility; applicable for all patient types
- Versatile for all care environments
- Latest in capnography technological advancements

Microstream[®] Capnography Advantages

Ease of Use

- No expensive sensors to replace
- Yearly calibration done in 5 minutes by BioMed
- Quick warm up time
 ~40 seconds from
 ON until first waveform
 and number appear
- One-piece Plug & Play consumables

Microstream[®] Capnography Advantages

Reliable Technology

- Fast response time
- 1 mm microbore tubing reduces delay time
- Crisp waveform longitudinal filter maintains laminar flow
- 0.2 micron Filter (hydrophobic longitudinal hollow fiber filter) prevents liquids from entering into the monitor

Microstream[®] Capnography Advantages

- Flexible for all Patient Populations
 Solution for monitoring neonates
 - 50 ml/min flow rate supports entire patient population – including neonates, compared to other brands that require 3-4 times the sample flow rate (150-200ml/min)
 - Does not compete for Neonate tidal volume
 - The lower the flow, the less moisture in the sampling line

FilterLine®Solutions for EMS

Non-Intubated

Intubated

Smart Solutions

Smart CapnoLine[®] Plus/ Smart CapnoLine[®] Plus Smart CapnoLine[®] Plus O₂

with connector

FilterLine® Sets

Smart Solutions for Non-intubated Patients

- "Microstream® technology allows the accurate measurement of EtCO2 in the absence of an endotracheal tube."
 - Continuous sampling from both mouth and nose
 - Special oral-piece design optimally samples when the patient is mouth breathing
 - Increased surface area provides greater sampling accuracy in the presence of low tidal volumes

ASA, 2001. Jay Brodsky, MD Professor of Anesthesia, Stanford University Medical Center, CA, USA.

Smart Solutions for Non-intubated Patients

"Smart CapnoLine®Plus / Smart CapnoLine®Plus O₂"

Oral/nasal FilterLine® for CO₂ measurement and O₂ delivery

- Uni-junction sampling method ensures optimal waveform and ultra-fast response time
- Unique O₂ delivery method reduces CO₂ sampling dilution
- Effective O₂ delivery for both low flow and high flow needs

Microstream[®] Capnography A Unique Solution for Non-intubatedPatients

CO₂ sampling/O₂ delivery for non-intubated patients

Small pin holes deliver oxygen around both nose and mouth

Uni-junction™ of sampling ports prevents dilution from supplemental oxygen

FilterLine® Sets - Solutions for Intubated Patients

- Easily handles moisture and secretions without water traps
- Able to measure in any position
- Easily switches to non-intubated monitoring without re-calibration of monitor

FilterLine® FAQs

- For use only with monitors using Microstream[®] technology
- Single patient use, latex free
- Do not attempt to disinfect or flush lines
- Securely connect all components
- Never cut any area of a FilterLine[®] CO₂sampling line
- Do not instill medications through the airway adapter
- When suctioning or instilling saline, place monitor into standby
- Never pass a suction catheter or stylet through the intubated airway adapter
- Change the FilterLine® CO₂ sampling line when the monitor displays a CO₂ occlusion message

Microstream®Capnography Solutions for all Applications

"Microstream® features:

- Low flow rates
- Reduced dead space
- Lack of moisture-associated occlusion problems, and
- Low power consumption.

Furthermore, it can be used reliably in both intubated and non-intubated patients."

*Journal of Clinical Monitoring and Computing, August 1999. Baruch Krauss, MD, Division of Emergency Medicine, Boston Children's Hospital, Instructor in Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.

Capnographic Waveforms

As Diagnostic as an ECG Waveform

Capnographic Waveform

- Normal waveform of one respiratory cycle
- Similar to ECG
 - Height shows amount of CO₂
 - Length depicts time

Capnogram: Phase I

- Phase I occurs during exhalation of air from the anatomic dead space, which normally contains no CO₂.
- This part of the curve is normally flat, providing a steady baseline.

Capnogram: Phase II

- Phase II occurs during alveolar washout and recruitment, with a mixture of dead space and alveolar air being exhaled.
- Phase II normally consists of a steep upward slope.

Capnogram: Phase III

- Phase III is the alveolar plateau, with expired gas coming from the alveoli.
- In patients with normal respiratory mechanics, this portion of the curve is flat, with a gentle upward slope.
- The highest point on this slope represents the EtCO₂ value.

Capnogram: Phase IV

- Atmospheric air contains negligible amounts of CO₂.
- Phase IV occurs during inspiration, where the EtCO₂ level normally drops rapidly to zero.
 - Unless CO₂ is present in the inspired air, as occurs when expired air is rebreathed
- This part of the waveform is a steep, downward slope.

Capnography Waveform

Normal range is 35-45 mm Hg (5% vol)

Capnography Waveform Question

- How would your capnogram change if you intentionally started to breathe at a rate of 30?
 - Frequency
 - Duration
 - Height
 - Shape

Hyperventilation

Hyperventilation

When every breath counts

Capnography Waveform Question

 How would your capnogram change if you intentionally decreased your respiratory rate decreased to 8?

Frequency

Duration

Height

Shape

Hypoventilation

Normal

Capnography Waveform Patterns

Capnography Waveform Question

How would the waveform shape change during an asthma attack?

Bronchoconstriction

Shark-like in appearance

Asthma

- Studies are looking at the correlation of baseline values when dealing with asthmatics
- Treatment will then be tailored to what category the patient falls

Asthma

- Green—initial distress phase with decrease in CO2 levels. Treatment would include MDI and follow up.
- Yellow—moderate distress phase with normal CO2 levels. Treatment includes neb and transport.
- Red—severe distress phase with increased CO2 levels.
 This is immediate epi SQ, Neb, and ETT.

Bronchospasm Waveform Pattern

- Bronchospasm hampers ventilation
 - Curves upstroke of Phase II
- Characteristic pattern for bronchospasm
 - "Shark Fin" shape to waveform.

Capnography Waveform Patterns

Capnography Waveform Patterns

Using Capnography

Using Capnography

- Documentation
 - Waveforms
 - Initial assessment
 - Changes with treatment
 - EtCO₂ values
 - . Trends over time

Capnography Applications on Intubated Patients

- Confirm correct placement of ET tube
- Detect changes in ET tube position immediately
- Resuscitation
 - Assess adequacy of chest compressions
 - Detect ROSC
 - Objective data for decision to cease resuscitation
- Optimize ventilation of patients
- Document, document, document

- Traditional methods of confirmation
 - Listen for breath sounds
 - Observe chest movement
 - Auscultate stomach
 - Note ET tube clouding

These methods are subjectiv and can be unreliable

- "The presence of exhaled CO₂ indicates proper tracheal tube placement." P I-101
- "...end-tidal CO₂ monitors can confirm successful tracheal tube placement within seconds of an intubation attempt" P I-101

Source: Guidelines 2000 for Cardiovascular Resuscitation and Emergency Cardiovascular Care. *Circulation*. 2000;102(suppl I)8. August 22,2000

- 108 patients intubated in the Field
 - 52 trauma patients
 - 56 medical patients
- ET tube placement checked on arrival at the ED
- 27 patients (25%) had improperly placed ET tube
 - 18 were in the esophagus
 - 9 in oropharynx with tip above the cords

Source: Falk J, Sayre MR. "Confirmation of Airway Placement", *Prehospital Emergency Care.* 1999; 3:273-278

" All endotracheal intubations must be accompanied by an objective confirmation...The optimal method of measurement is quantitative capnography and its use on all intubated patients." p-277

Source: Falk J, Sayre MR. "Confirmation of Airway Placement", Prehospital Emergency Care. 1999; 3:273-278

Capnography provides

- Documentation of correct placement
- Ongoing documentation over time through the trending printout
- Documentation of correct position at ED arrival

Transferred to ED at 12:25

- Study in neonates
 - 100 intubations
 - 40 were esophageal
 - Capnography identified 39 of the 40
 - Mean time to detection of esophageal intubation
 - 1.6 seconds with capnography
 - 97 seconds with clinical signs.

Source: Roberts W, et al. 1995.Pediatric Pulmonology. 19:262-268

Airway - Rescue Devices

Combitube

LMA

- ET tube placement in esophagus may briefly detect CO₂
 - Following carbonated beverage ingestion
 - When gastric distention was produced by mouth to mouth ventilation
- CO₂ detection will disappear after 6 positive pressure breaths

Detect ET Tube Displacement

- Traditional methods of monitoring tube position
 - Periodic auscultation of breath sounds
 - Gastric distention
 - Worsening of patient's color
 - Late sign of tube displacement

These methods are subjective and unreliable

Detect ET Tube Displacement

Continuous capnography monitoring devices can identify and signal a fall in exhaled CO2 consistent with tracheal tube dislodgement. This may be very helpful in emergencies when clinicians have other responsibilities." p-140

Source: ACLS-The Reference Textbook, ACLS: Principles and Practice. Ed. RO Cummins. American Heart Association. 2003. ISBN 0-87493-341-2

Detect ET Tube Displacement

- Capnography
 - immediately detects ET tube displacement

Capnography in Cardio Pulmonary Resuscitation

- Assess chest compressions
- Early detection of ROSC
- Objective data for decision to cease resuscitation

CPR, Cardiac Output, and EtCO2

CPR: Assess Chest Compressions

- Capnography provides non-invasive method for monitoring blood flow generated by CPR
- Airway- open with ET tube
- Breathing controlled and stable
- Circulation- cardiac output directly related to changes in EtCO₂

CPR: Assess Chest Compressions

- Increase in EtCO₂ has been shown to correlate with
 - A fresh rescuer at a faster compression rate
 - A new rescuer during CPR with no change in rate
 - Mechanical compressions

Better compressions lead to higher ETCO2 levels

Source: White RD. "Out-of-Hospital Monitoring of End-Tidal Carbon Dioxide Pressure During CPR", *Annals of Emergency Medicine*. 1994; 23(1):756-761

CPR: Assess Chest Compressions

Use feedback from ETCO2 to depth/rate/force of chest compressions during CPR

CPR: Detect ROSC

- 90 prehospital patients intubated in the field
- 16 survivors
- In 13 survivors a rapid rise on CO₂ production was the earliest indicator of ROSC.
 - Before a palpable pulse
 - Prior to blood pressure

Source: Wayne MA "Use of End-tidal Carbon Dioxide to Predict Outcome in Prehospital Cardiac Arrest". *Annals of Emergency Medicine*. 1995; 25(6):762-767

CPR: Detect ROSC

ETCO2 DURING CPR

Dependent on down time and preexisting conditions

Decision to Cease Resuscitation

- Capnography
 - Has been shown to predict probability of outcome following resuscitation
 - May be used in the decision to cease resuscitation efforts

Source: Levine RL. End-tidal carbon dioxide and outcome of out-of-hospital cardiac arrest. *New England Journal of Medicine*. 1997;337(5):301-306.

Decision to Cease Resuscitation

- 90 victims of prehospital cardiac arrest with PEA
- EtCO2 in ROSC was much higher after 20 minutes

ROSCNo ROSC

Initial $10.9 \pm 4.911.7 \pm 6.6 P = .672 (NS)$

20 min $31.0\pm5.33.9\pm2.8$ P < = .0001

100% mortality if unable to achieve an EtCO₂
 of 10 mm Hg after 20 minutes

Source: Wayne MA. Use of End-tidal Carbon Dioxide to Predict Outcome in Prehospital Cardiac Arrest. *Annals of Emergency Medicine*. 1995;25(6):762-767

Optimize Ventilation

- Use capnography to titrate EtCO₂ levels in patients sensitive to fluctuations
- Patients with suspected intracranial pressure (ICP)
 - Head trauma
 - Stroke
 - Brain tumors
 - Brain infections

Optimize Ventilation

- Monitor ventilations with capnography to maintain appropriate and stable CO₂ levels
- Follow local protocols and medical direction

Non-Intubated Patients

- Objective Assessment of Respiratory Complaints
 - Asthma
 - COPD vs. CHF
- Response to Treatment of Pain
- Assessment of Airway & Ventilatory Status
 - Seizure
 - Intoxication
 - Overdose
- Perfusion Assessment
 - Pacing (Electrical vs. Mechanical Capture)
 - Stable vs. Unstable tachycardia's
 - PEA vs. rhythm with low perfusion

Case Presentations

78 y/o Male, short of breath Hx. Of CHF and COPD

Patient treated with Albuterol, Solu-Medrol and Magnesium Sulfate.

66 y/o female, hx of COPD and CHF, acute onset of CP and Shortness of Breath

Patient placed on CPAP, treated with NTG, Lasix and Morphine. (Above strip was with CPAP in place)

4 y/o female, sister has Asthma and mom administrated her sister's MDI. RR 46, PR 146

Is there Bronchoconstriction present?

10 y/o female hx of Asthma, School nurse treated with 2 neb. treatments.

Is there Bronchoconstriction present?

89 y/o male called 911 for his wife who fell, he c/o dyspnea. Hx of COPD.

Is there Bronchoconstriction present?

When every breath counts

2 year old with special needs having a seizure

Does the patient have an airway and is she ventilating adequately?

60 y/o CPR in progress, rhythm change noted

No palpable pulses, how can we determine if there is perfusion?

CPR is stopped, Ventilations are continued.

Is there perfusion? Why or Why Not

48 y/o male Narcotic OD. Code Summary

1	Time	Event	HR	Sp02*PR	EtC02(mmHg)	•RR NIBP(mmHg)•PR
881985141785	14:17:65					
	14:18:22					
	14:18:58		57	97•59		
Sex:	14:22:83		59			
	14:22:32		59			
	14:27:83		57			
Aug 85 14:17:85	14:27:85		57			
899	14:29:13		64	98•63		142/97(111)=63
SCEMS	14:32:84		68	99*68		146/3/(1117-05
88:41:56	14:36:51		52	99*59		
00.41.30	14:37:84		64	******************		
	4 101013101313111111			99*62		
	14:42:83		76	188*73		207 100 (400) -00
	14:45:16		63	99*63		137/98(188) •63
	14:47:84		68	98*68		
	14:47:46		66	98*67		
	14:52:83					
	14:57:83					
	14:59:81					

Are there any issues present?

48 y/o male Narcotic OD. Code Summary

	Time	Event	HR	Sp02*PR E	tCO2(mmHg)*RR	NIBP(mmHg)*PR
881985141785	14:17:85	Power On				
	14:18:22	Initial Rhythm			36*6	
	14:18:58	Alarm Apnea	57	97•59	21•9	
Sex:	14:22:83	Vital Signs	59		35%	
	14:22:32	A Tarm Apnea	59		0	
	14:27:83	Vital Signs	57		28*14	
g 85 14:17:85	14:27:85	A Tarm Apnea	57		28*14	
888	14:29:13	HIBP	64	98*63	58*9	142/97(111) •63
SCEMS	14:32:84	Vital Signs	68	99*68	47•7	
88:41:56	14:36:51	A larm Apnea	52	99•59	39*12	
	14:37:84	Vital Signs	64	99*62	45 49	
	14:42:83	Vital Signs	76	188*73	39•21	
	14:45:16	NIBP	63	99*63	37*16	137/98(188) •63
	14:47:84	Vital Signs	68	98*68	38*28	
	14:47:46	Generic	66	98*67	36*19	
	14:52:83	Vital Signs		Na.		
	14:57:83	Vital Signs				
	14:59:81	Power Off				

Are there any issues present?

Trend Summary

63 y/o female, found unresponsive in bed 1 hour after lunch. Hx CVA and IDDM

- VS Initial
 - P-86, R-14, BP 112/76, GCS-8
- VS 8 minutes later
 - P-88, R-40, ETCO₂ 20, GCS-8
- VS 17 minutes into patient care
 - P-84, R-14, BP 142/112, GCS-8, ETCO₂ 30
- VS 24 minutes into patient care
 - P-86, R-36, BP 150/120, GCS-8, ETCO₂ 20
- Pulse Ox 100% on NRB entire time

Was the patient ventilating adequately during care?

What type of breathing pattern has been described and documented?

Detection of Metabolic Acidosis

- Assesses metabolic status providing information on how effectively CO2 is being produced by cellular metabolism.
- Recent studies have shown that EtCO2 and serum bicarbonate (HCO3) are linearly correlated in diabetes
- can be used as an indicator of metabolic acidosis in these patients

Capnography in Diabetics

- As the patient becomes acidotic, HCO3 decreases and a compensatory respiratory alkalosis develops with an increase in minute ventilation and a resultant decrease in EtCO2.
- The more acidotic, the lower the HCO3, the higher the respiratory rate and the lower the EtCO2.

Capnography in Diabetes

- Ketoacidosis
 - metabolic acidosis
 - compensatory tachypnea, low EtCO₂
- HHNC
 - Nonacidotic
 - normal respiratory rate, normal EtCO₂

Why this Works

- $H^+ + HCO_3 \rightarrow H_2CO_3 \rightarrow H_2O + CO_2$
- As the body uses up it's stores of Bicarb to rid the acid it looses it's ability to transport Carbon Dioxide
- So as Dioxide levels fall it correlates to the lack of bicarb....patient is acidotic.

86 year-old male "Something is not right."

Capnography and Perfusion

How is the patient's perfusion status?

Cardioversion

CO₂ Initializing post Defibrillation and Cardioversion

Capnography and Perfusion

How is the patient's perfusion status?

Trend Summary

67 year-old male Cardiac Arrest - COPD

Is the tube in the correct place?

Perfusion Status???

Do we need to continue chest compressions?

Trend Summary

Other Waveforms

Abnormal Waveforms

- **❖Gradual increase in EtCO₂**
 - Rising body temperature
 - Hypoventilation
 - Increased metabolism

Abnormal Waveforms

Sustained low EtCO₂ with a good plateau indicates either hyperventilation or a large physiological dead space ventilation, resulting in a widened a-ADCO₂.

- ❖Pulmonary Emboli
- *Hypovolemia
- Hyperventilation
- COPD resulting in alveolar over-distension
- ❖ Excessive level of PEEP

Curare Cleft

Emphysema

 The slope of phase III can be reversed in patients with emphysema where there is marked destruction of alveolar capillary membranes and reduced gas exchange

Where to Get More Information

- Medtronic Physio-Control
 - Local Sales Representative
 - www.physiocontrol.com
- www.oridion.com
- www.capnography.com

Oridion Medical 1 888 ORIDION

Troy Smith NREMT-P troy@emstrainingsolutions.com

